


Card and Reader Technologies



**ACR122U NFC Reader** 





## **ACR122U NFC Reader**

### **Table of Contents**

| 1.0 Introduction                                                              | ∠  |
|-------------------------------------------------------------------------------|----|
| 1.1 USB Interface                                                             | ∠  |
| 2.0 Implementation                                                            | 5  |
| 2.1 Communication Flow Chart of ACR122U                                       | 5  |
| 2.2 Smart Card Reader Interface Overview                                      | 5  |
| 3.0 PICC Interface Description                                                | 6  |
| 3.1 ATR Generation                                                            | 6  |
| 3.1.1 ATR format for ISO 14443 Part 3 PICCs                                   | 6  |
| 3.1.2 ATR format for ISO 14443 Part 4 PICCs.                                  | 7  |
| 4.0 PICC Commands for General Purposes                                        | 8  |
| 4.1 Get Data                                                                  | 8  |
| 5.0 PICC Commands (T=CL Emulation) for MIFare Classic Memory Cards            | 9  |
| 5.1 Load Authentication Keys                                                  | 9  |
| 5.2 Authentication                                                            | 10 |
| 5.3 Read Binary Blocks                                                        | 12 |
| 5.4 Update Binary Blocks                                                      | 13 |
| 5.5 Value Block Related Commands                                              | 13 |
| 5.5.1 Value Block Operation                                                   | 13 |
| 5.5.2 Read Value Block                                                        | 14 |
| 5.5.3 Restore Value Block                                                     | 15 |
| 6.0 Pseudo APDUs                                                              | 16 |
| 6.1 Direct Transmit                                                           | 16 |
| 6.2 Bi-Color LED and Buzzer Control                                           | 16 |
| 6.3 Get the Firmware Version of the reader                                    | 17 |
| 6.4 Get the PICC Operating Parameter                                          | 18 |
| 6.5 Set the PICC Operating Parameter                                          | 18 |
| 7.0 Basic Program Flow for Contactless Applications                           | 19 |
| 7.1 How to access PCSC Compliant Tags (ISO14443-4)?                           | 20 |
| 7.2 How to access DESFIRE Tags (ISO14443-4)?                                  | 21 |
| 7.3 How to access FeliCa Tags (ISO18092)?                                     | 22 |
| 7.4 How to access NFC Forum Type 1 Tags (ISO18092)? E.g. Jewel and Topaz Tags | 22 |
| 7.5 Get the current setting of the contactless interface                      | 24 |
| Appendix 1: ACR122 PCSC Escape Command                                        | 25 |
| Appendix 2: APDU Command and Response Flow for ISO14443 Compliant Tags        | 27 |
| Appendix 3: APDU Command and Response Flow for ISO18092 Compliant Tags        | 28 |



## **ACR122U NFC Reader**

| Appendix 4: Error Codes                      | 29 |
|----------------------------------------------|----|
| Appendix 5: Sample Codes for Setting the LED | 30 |



**ACR122U NFC Reader** 

#### 1.0 Introduction

The ACR122 is a PC-linked Contactless Smart Card Reader/Writer used for accessing ISO14443-4 Type A and B, MiFare, ISO 18092 or NFC, and FeliCa tags. The ACR122 is PCSC compliant so it is compatible with existing PCSC applications. Furthermore, the standard Microsoft CCID driver is used to simplify the driver installation.

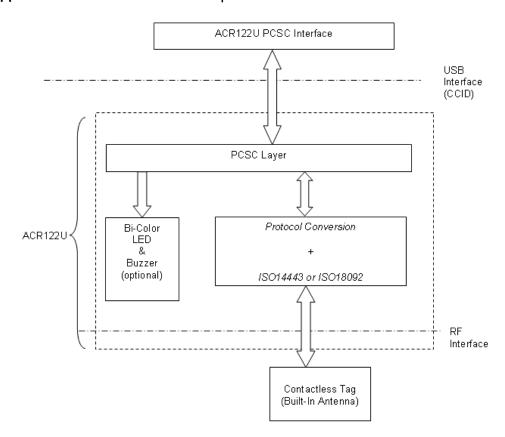
The ACR122 serves as the intermediary device between the personal computer and the contactless tag via the USB interface. The reader carries out the command issued from the PC, whether the command is used in order to communicate with a contactless tag or control the device peripherals (LED or buzzer).

The ACR122 uses the PCSC APDUs for contactless tags following the PCSC Specification and makes use of pseudo APDUs in sending commands for ISO 18092 tags and controlling the device peripherals. This document will discuss how you can use the ACR122 in your smart card system.

#### 1.1 USB Interface

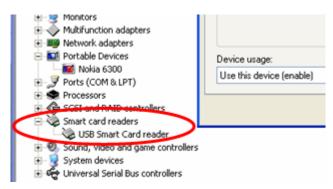
The ACR122U is connected to a computer through USB as specified in the USB Specification 1.1. The ACR122U is working in Full speed mode, i.e. 12 Mbps.

| Pin | Signal           | Function                                                   |
|-----|------------------|------------------------------------------------------------|
| 1   | V <sub>BUS</sub> | +5V power supply for the reader (Max 200mA, Normal 100mA)  |
| 2   | D-               | Differential signal transmits data between ACR122U and PC. |
| 3   | D+               | Differential signal transmits data between ACR122U and PC. |
| 4   | GND              | Reference voltage level for power supply                   |




**ACR122U NFC Reader** 

### 2.0 Implementation


#### 2.1 Communication Flow Chart of ACR122U

The Standard Microsoft CCID and PCSC drivers are used. Therefore, no ACS drivers are required because the drivers are already built inside the windows operating system. You also have to modify your computer's registry settings to be able to use the full capabilities of the ACR122 NFC Reader. See **Appendix 1:** ACR122 PCSC Escape Command for more details.



#### 2.2 Smart Card Reader Interface Overview

Just click the "Device Manager" to locate the "ACR122U PICC Interface". The standard Microsoft USB CCID Driver is used.





## **ACR122U NFC Reader**

## 3.0 PICC Interface Description

#### 3.1 ATR Generation

If the reader detects a PICC, an ATR will be sent to the PCSC driver for identifying the PICC.

#### 3.1.1 ATR format for ISO 14443 Part 3 PICCs.

| Byte | Value<br>(Hex) | Designation    | Description                                                                                                                                   |
|------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 3B             | Initial Header |                                                                                                                                               |
| 1    | 8 <u>N</u>     | ТО             | Higher nibble 8 means: no TA1, TB1, TC1 only TD1 is following.  Lower nibble N is the number of historical bytes (HistByte 0 to HistByte N-1) |
| 2    | 80             | TD1            | Higher nibble 8 means: no TA2, TB2, TC2 only TD2 is following.  Lower nibble 0 means T = 0                                                    |
| 3    | 01             | TD2            | Higher nibble 0 means no TA3, TB3, TC3, TD3 following. Lower nibble 1 means T = 1                                                             |
| 4    | 80             | T1             | Category indicator byte, 80 means A status indicator may be present in an optional COMPACT-TLV data object                                    |
| То   | 4F             | Tk             | Application identifier Presence Indicator                                                                                                     |
|      | 0C             |                | Length                                                                                                                                        |
| 3+N  | RID            |                | Registered Application Provider Identifier (RID) # A0 00 00 03 06                                                                             |
|      | SS             |                | Byte for standard                                                                                                                             |
|      | C0 C1          |                | Bytes for card name                                                                                                                           |
|      | 00 00 00 00    | RFU            | RFU # 00 00 00 00                                                                                                                             |
| 4+N  | UU             | TCK            | Exclusive-oring of all the bytes T0 to Tk                                                                                                     |

| ATR     |    |     |     |    |    |        |          |          |       |          |     |
|---------|----|-----|-----|----|----|--------|----------|----------|-------|----------|-----|
| Initial | T0 | TD1 | TD2 | T1 | Tk | Length | RID      | Standard | Card  | RFU      | TCK |
| Header  |    |     |     |    |    |        |          |          | Name  |          |     |
| 3B      | 8F | 80  | 01  | 80 | 4F | 0C     | A0 00 00 | 03       | 00 01 | 00 00 00 | 6A  |
|         |    |     |     |    |    |        | 03 06    |          |       | 00       |     |

Where: Length (YY) = 0C

**RID** = A0 00 00 03 06 (PC/SC Workgroup)

Standard (SS) = 03 (ISO14443A, Part 3)

**Card Name (C0 .. C1)** = [00 01] (MIFare 1K)

Where, Card Name (C0 .. C1) 00 01: Mifare 1K 00 02: Mifare 4K

00 03: Mifare Ultralight

00 26: MiFare Mini

F0 04: Topaz and Jewel F0 11: FeliCa 212K F0 12: Felica 424K

FF [SAK]: Undefined



## ACR122U NFC Reader

#### 3.1.2 ATR format for ISO 14443 Part 4 PICCs.

| Byte        | Value<br>(Hex) | Designation    | Description                                                                                                                                                                                             |
|-------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | 3B             | Initial Header |                                                                                                                                                                                                         |
| 1           | 8 <u>N</u>     | ТО             | Higher nibble 8 means: no TA1, TB1, TC1 only TD1 is following.  Lower nibble N is the number of historical bytes (HistByte 0 to HistByte N-1)                                                           |
| 2           | 80             | TD1            | Higher nibble 8 means: no TA2, TB2, TC2 only TD2 is following. Lower nibble 0 means T = 0                                                                                                               |
| 3           | 01             | TD2            | Higher nibble 0 means no TA3, TB3, TC3, TD3 following. Lower nibble 1 means T = 1                                                                                                                       |
| 4           | XX             | T1             | Historical Bytes:                                                                                                                                                                                       |
| to<br>3 + N | XX<br>XX<br>XX | Tk             | ISO14443A: The historical bytes from ATS response. Refer to the ISO14443-4 specification.  ISO14443B: The higher layer response from the ATTRIB response (ATQB). Refer to the ISO14443-3 specification. |
| 4+N         | UU             | TCK            | Exclusive-oring of all the bytes T0 to Tk                                                                                                                                                               |

We take for example, an ATR for DESFire which is: DESFire (ATR) = **3B 86 80 01 06 75 77 81 02 80 00** 

| ATR            |                   |     |     |     |                |     |
|----------------|-------------------|-----|-----|-----|----------------|-----|
| Initial Header | Initial Header T0 |     | TD2 | ATS | 3              |     |
| IIIIIai Headei | 10                | TD1 | 102 | T1  | Tk             | TCK |
| 3B             | 86                | 80  | 01  | 06  | 75 77 81 02 80 | 00  |

This ATR has 6 bytes of ATS which is: [06 75 77 81 02 80]

**NOTE:** Use the APDU "FF CA 01 00 00" to distinguish the ISO14443A-4 and ISO14443B-4 PICCs, and retrieve the full ATS if available. The ATS is returned for ISO14443A-3 or ISO14443B-3/4 PICCs.

Another example would be the ATR for ST19XRC8E which is: ST19XRC8E (ATR) = **3B 8C 80 01 50 12 23 45 56 12 53 54 4E 33 81 C3 55** 

| ATR               |    |     |     |     |                                  |     |
|-------------------|----|-----|-----|-----|----------------------------------|-----|
| Initial Header    | ΤO | TD1 | TD2 | ATC | QΒ                               |     |
| Illiliai i leadei | 10 | וטו | 102 | T1  | Tk                               | TCK |
| 3B                | 86 | 80  | 01  | 50  | 12 23 45 56 12 53 54 4E 33 81 C3 | 55  |

Since this card follows ISO 14443 Type B, the response would be ATQB which is 50 12 23 45 56 12 53 54 4E 33 81 C3 is 12 bytes long with no CRC-B

Note: You can refer to the ISO7816, ISO14443 and PCSC standards for more details.



ACR122U NFC Reader

## 4.0 PICC Commands for General Purposes

#### 4.1 Get Data

The "Get Data command" will return the serial number or ATS of the "connected PICC".

Table 1-a: Get UID APDU Format (5 Bytes)

| rabio i ai cot cib i i bo i cimat (c b) toc) |       |     |    |    |               |  |
|----------------------------------------------|-------|-----|----|----|---------------|--|
| Command                                      | Class | INS | P1 | P2 | Le            |  |
| Get Data                                     | FF    | CA  | 00 | 00 | 00            |  |
| Get Data                                     | ГГ    | CA  | 01 | 00 | (Full Length) |  |

Table 1-b: Get UID Response Format (UID + 2 Bytes) if P1 = 0x00

| Response | Data Out | ,     | •   | •   |
|----------|----------|-------|-----|-----|
| Result   | UID      | UID   | SW1 | SW2 |
|          | (LSB)    | (MSB) |     |     |

Table 1-c: Get ATS of a ISO 14443 A card (ATS + 2 Bytes) if P1 = 0x01

| Response | Data Out |     |     |
|----------|----------|-----|-----|
| Result   | ATS      | SW1 | SW2 |

Table 1-d: Response Codes

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |
| Error   | 6A  | 81  | Function not supported.               |

#### Examples:

- 1. To get the serial number of the "connected PICC" UINT8 GET\_UID[5]={0xFF, 0xCA, 0x00, 0x00, 0x04};
- 2. To get the ATS of the "connected ISO 14443 A PICC" UINT8 GET\_ATS[5]={0xFF, 0xCA, 0x01, 0x00, 0x04};



**ACR122U NFC Reader** 

## 5.0 PICC Commands (T=CL Emulation) for MIFare Classic Memory Cards

### 5.1 Load Authentication Keys

The "Load Authentication Keys command" will load the authentication keys into the reader. The authentication keys are used to authenticate the particular sector of the Mifare 1K/4K Memory Card. Two kinds of authentication key locations are provided, volatile and non-volatile key locations respectively.

Table 2-a: Load Authentication Keys APDU Format (11 Bytes)

| Command                     | Class | INS | P1            | P2         | Lc | Data In          |
|-----------------------------|-------|-----|---------------|------------|----|------------------|
| Load Authentication<br>Keys | FF    | 82  | Key Structure | Key Number | 06 | Key<br>(6 bytes) |

Key Structure (1 Byte):

0x00 = Key is loaded into the reader volatile memory.

Other = Reserved.

Key Number (1 Byte):

 $0x00 \sim 0x01$  = Key Location. The keys will disappear once the reader is disconnected from the PC.

Key (6 Bytes):

The key value loaded into the reader. E.g. {FF FF FF FF FF}

Table 2-b: Load Authentication Keys Response Format (2 Bytes)

| Response | Data Out |     |
|----------|----------|-----|
| Result   | SW1      | SW2 |

Table 2-c: Load Authentication Keys Response Codes

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |

#### **Examples:**



### ACR122U NFC Reader

#### 5.2 Authentication

The "Authentication command" uses the keys stored in the reader to do authentication with the MIFARE 1K/4K card (PICC). Two types of authentication keys are used: TYPE\_A and TYPE\_B.

Table 3-a: Load Authentication Keys APDU Format (6 Bytes) [Obsolete]

|    |               |       |     |    | 7 11 2 2 1 2 11 11 1011 | <del> </del> | [ 0.000.010 ] |
|----|---------------|-------|-----|----|-------------------------|--------------|---------------|
| C  | ommand        | Class | INS | P1 | P2                      | P3           | Data In       |
| Αι | uthentication | FF    | 88  | 00 | Block Number            | Key<br>Type  | Key Number    |

Table 3-b: Load Authentication Kevs APDU Format (10 Bytes)

| Command        | Class | INS | P1 | P2 | Lc | Data In                 |
|----------------|-------|-----|----|----|----|-------------------------|
| Authentication | FF    | 86  | 00 | 00 | 05 | Authenticate Data Bytes |

Table 3-c: Authenticate Data Bytes (5 Byte):

| Byte1   | Byte 2 | Byte 3 | Byte 4   | Byte 5     |
|---------|--------|--------|----------|------------|
| Version | 0x00   | Block  | Key Type | Key Number |
| 0x01    |        | Number |          |            |

Block Number: 1 Byte. This is the memory block to be authenticated.

0x60 = Key is used as a TYPE A key for authentication. 0x61 = Key is used as a TYPE B key for authentication.

Key Number: 1 Byte

 $0x00 \sim 0x1F = Key Location.$ 

NOTE: For MIFARE 1K Card, it has a total of 16 sectors and each sector consists of 4 consecutive blocks. E.g. Sector 0x00 consists of Blocks {0x00, 0x01, 0x02 and 0x03}; Sector 0x01 consists of Blocks {0x04, 0x05, 0x06 and 0x07}; the last sector 0x0F consists of Blocks {0x3C, 0x3D, 0x3E and 0x3F}. Once the authentication is done successfully, there is no need to do the authentication again provided that the blocks to be accessed belong to the same sector. Please refer to the MIFARE 1K/4K specification for more details.

Table 3-d: Load Authentication Keys Response Format (2 Bytes)

|          |          |   | ,  |  |
|----------|----------|---|----|--|
| Response | Data Out |   |    |  |
| Result   | SW1      | S | W2 |  |

Table 3-e: Load Authentication Keys Response Codes

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |

#### MIFARE 1K Memory Map.

| Sectors                           | Data Blocks             | Trailer Block       | $\exists$ $\setminus$ |
|-----------------------------------|-------------------------|---------------------|-----------------------|
| (Total 16 sectors. Each sector    | (3 blocks, 16 bytes per | (1 block, 16 bytes) |                       |
| consists of 4 consecutive blocks) | block)                  |                     |                       |
| Sector 0                          | 0x00 ~ 0x02             | 0x03                | ן ן 1K                |
| Sector 1                          | 0x04 ~ 0x06             | 0x07                | Bytes                 |
|                                   |                         |                     |                       |
|                                   |                         |                     |                       |
| Sector 14                         | 0x38 ~ 0x0A             | 0x3B                |                       |
| Sector 15                         | 0x3C ~ 0x3E             | 0x3F                | コノ                    |



## **ACR122U NFC Reader**

2K Bytes

### MIFARE 4K Memory Map.

| Sectors (Total 32 sectors. Each sector consists of 4 consecutive blocks) | Data Blocks<br>(3 blocks, 16 bytes per<br>block) | Trailer Block<br>(1 block, 16 bytes) |                  |       |
|--------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|------------------|-------|
| Sector 0                                                                 | 0x00 ~ 0x02                                      | 0x03                                 |                  | 2K    |
| Sector 1                                                                 | 0x04 ~ 0x06                                      | 0x07                                 | $\Box$ $\rangle$ | Bytes |
|                                                                          |                                                  |                                      |                  | Dytes |
|                                                                          |                                                  |                                      |                  |       |
| Sector 30                                                                | 0x78 ~ 0x7A                                      | 0x7B                                 |                  |       |
| Sector 31                                                                | 0x7C ~ 0x7E                                      | 0x7F                                 | コノ               |       |

| Sectors (Total 8 sectors. Each sector consists of 16 consecutive blocks) | Data Blocks<br>(15 blocks, 16 bytes per<br>block) | Trailer Block<br>(1 block, 16 bytes) |
|--------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|
| Sector 32                                                                | 0x80 ~ 0x8E                                       | 0x8F                                 |
| Sector 33                                                                | 0x90 ~ 0x9E                                       | 0x9F                                 |
|                                                                          |                                                   |                                      |
|                                                                          |                                                   |                                      |
| Sector 38                                                                | 0xE0 ~ 0xEE                                       | 0xEF                                 |
| Sector 39                                                                | 0xF0 ~ 0xFE                                       | 0xFF                                 |

### MIFARE Ultralight Memory Map.

| Byte Number     | 0      | 1        | 2      | 3      | Page | ] ) |          |
|-----------------|--------|----------|--------|--------|------|-----|----------|
| Serial Number   | SN0    | SN1      | SN2    | BCC0   | 0    | 1   |          |
| Serial Number   | SN3    | SN4      | SN5    | SN6    | 1    |     |          |
| Internal / Lock | BCC1   | Internal | Lock0  | Lock1  | 2    |     |          |
| OTP             | OPT0   | OPT1     | OTP2   | OTP3   | 3    |     |          |
| Data read/write | Data0  | Data1    | Data2  | Data3  | 4    |     |          |
| Data read/write | Data4  | Data5    | Data6  | Data7  | 5    | 1 ( | 512 bits |
| Data read/write | Data8  | Data9    | Data10 | Data11 | 6    | 1 ≻ | Or       |
| Data read/write | Data12 | Data13   | Data14 | Data15 | 7    | 1 / | 64 bytes |
| Data read/write | Data16 | Data17   | Data18 | Data19 | 8    |     | O+ bytes |
| Data read/write | Data20 | Data21   | Data22 | Data23 | 9    |     |          |
| Data read/write | Data24 | Data25   | Data26 | Data27 | 10   |     |          |
| Data read/write | Data28 | Data29   | Data30 | Data31 | 11   |     |          |
| Data read/write | Data32 | Data33   | Data34 | Data35 | 12   |     |          |
| Data read/write | Data36 | Data37   | Data38 | Data39 | 13   |     |          |
| Data read/write | Data40 | Data41   | Data42 | Data43 | 14   | ] / |          |
| Data read/write | Data44 | Data45   | Data46 | Data47 | 15   |     |          |

#### Example:

- To authenticate the Block 0x04 with a {TYPE A, key number 0x00}. For PC/SC V2.01, Obsolete
  - $APDU = \{FF 88 00 04 60 00\};$
- 2. To authenticate the Block 0x04 with a {TYPE A, key number 0x00}. For PC/SC V2.07 alaAPDU = {FF 86 00 00 05 01 00 04 60 00}

#### Note

MIFARE Ultralight does not need to do any authentication. The memory is free to access.



## **ACR122U NFC Reader**

### 5.3 Read Binary Blocks

The "Read Binary Blocks command" is used for retrieving a "data blocks" from the PICC. The data block/trailer block must be authenticated first.

Table 4-a: Read Binary APDU Format (5 Bytes)

| Command            | Class | INS | P1 | P2           | Le                      |
|--------------------|-------|-----|----|--------------|-------------------------|
| Read Binary Blocks | FF    | В0  | 00 | Block Number | Number of Bytes to Read |

where:

Block Number (1 Byte): The block to be accessed Number of Bytes to Read (1 Byte): Maximum 16 bytes

Table 4-b: Read Binary Block Response Format (N + 2 Bytes)

| Table T b. Tteaa Bi | able 1 bi Read Billary Block Response Fernial (IT : 2 Bytes) |     |     |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------|-----|-----|--|--|--|--|--|--|
| Response            | Data Out                                                     |     |     |  |  |  |  |  |  |
| Result              | 0 <= N <= 16                                                 | SW1 | SW2 |  |  |  |  |  |  |

Table 4-c: Read Binary Block Response Codes

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |

#### Example:

- 1. Read 16 bytes from the binary block 0x04 (MIFARE 1K or 4K) APDU = {FF B0 00 04 10}
- 2. Read 4 bytes from the binary Page 0x04 (MIFARE Ultralight)
  APDU = {FF B0 00 04 04}
- Read 16 bytes starting from the binary Page 0x04 (MIFARE Ultralight) (Pages 4, 5, 6 and 7 will be read)
   APDU = {FF B0 00 04 10}



### **ACR122U NFC Reader**

#### 5.4 Update Binary Blocks

The "Update Binary Blocks command" is used for writing a "data blocks" into the PICC. The data block/trailer block must be authenticated.

Table 5-a: Update Binary APDU Format (4 or 16 + 5 Bytes)

| Table 6 a. Space Billary 711 BG 1 office (1 of 10 10 Bytos) |     |     |    |                 |                                 |                                                                        |
|-------------------------------------------------------------|-----|-----|----|-----------------|---------------------------------|------------------------------------------------------------------------|
| Command                                                     | Cla | INS | P1 | P2              | Lc                              | Data In                                                                |
|                                                             | SS  |     |    |                 |                                 |                                                                        |
| Update Binary<br>Blocks                                     | FF  | D6  | 00 | Block<br>Number | Number of<br>Bytes to<br>Update | Block Data  4 Bytes for MIFARE Ultralight or 16 Bytes for MIFARE 1K/4K |

#### where:

Block Number (1 Byte): The starting block to be updated.

### Number of Bytes to Update (1 Byte):

- 16 bytes for MIFARE 1K/4K
- 4 bytes for MIFARE Ultralight.

#### Block Data (4 or 16 Bytes):

The data to be written into the binary block/blocks.

Table 5-b: Update Binary Block Response Codes (2 Bytes)

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |

#### **Example:**

- 1. Update the binary block 0x04 of MIFARE 1K/4K with Data {00 01 .. 0F} APDU = {FF D6 00 04 10 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F}
- 2. Update the binary block 0x04 of MIFARE Ultralight with Data {00 01 02 03} APDU = {FF D6 00 04 04 00 01 02 03}

#### 5.5 Value Block Related Commands

The data block can be used as value block for implementing value-based applications.

#### 5.5.1 Value Block Operation

The "Value Block Operation command" is used for manipulating value-based transactions. E.g. Increment a value of the value block etc.

Table 6-a: Value Block Operation APDU Format (10 Bytes)

| Command                  | Class | INS | P1 | P2              | Ĺс |       | Data In                            |
|--------------------------|-------|-----|----|-----------------|----|-------|------------------------------------|
| Value Block<br>Operation | FF    | D7  | 00 | Block<br>Number | 05 | VB_OP | VB_Value<br>(4 Bytes)<br>{MSB LSB} |

**Block Number (1 Byte):** The value block to be manipulated. **VB\_OP (1 Byte):** 

0x00 =Store the VB\_Value into the block. The block will then be converted to a value block.



## **ACR122U NFC Reader**

0x01 = Increment the value of the value block by the VB\_Value. This command is only valid for value block.

0x02 = Decrement the value of the value block by the VB\_Value. This command is only valid for value block.

VB\_Value (4 Bytes): The value used for value manipulation. The value is a signed long integer (4 bytes).

Example 1: Decimal  $-4 = \{0xFF, 0xFF, 0xFF, 0xFC\}$ 

| VB_Value |    |    |     |  |  |  |
|----------|----|----|-----|--|--|--|
| MSB      |    |    | LSB |  |  |  |
| FF       | FF | FF | FC  |  |  |  |

Example 2: Decimal  $1 = \{0x00, 0x00, 0x00, 0x01\}$ 

| VB_Value |    |    |     |  |  |  |
|----------|----|----|-----|--|--|--|
| MSB      |    |    | LSB |  |  |  |
| 00       | 00 | 00 | 01  |  |  |  |

Table 6-b: Value Block Operation Response Format (2 Bytes)

| Response | Data Out |     |  |  |
|----------|----------|-----|--|--|
| Result   | SW1      | SW2 |  |  |

Table 6-c: Value Block Operation Response Codes

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |
|         |     |     |                                       |

#### 5.5.2 Read Value Block

The "Read Value Block command" is used for retrieving the value from the value block. This command is only valid for value block.

Table 7-a: Read Value Block APDU Format (5 Bytes)

| Command          | Class | INS | P1 | P2           | Le |
|------------------|-------|-----|----|--------------|----|
| Read Value Block | FF    | B1  | 00 | Block Number | 04 |

Block Number (1 Byte): The value block to be accessed.

Table 7-b: Read Value Block Response Format (4 + 2 Bytes)

| Response | Data      | Out |     |
|----------|-----------|-----|-----|
| Result   | Value     | SW1 | SW2 |
|          | {MSB LSB} |     |     |

Value (4 Bytes): The value returned from the card. The value is a signed long integer (4 bytes).

Example 1: Decimal  $-4 = \{0xFF, 0xFF, 0xFF, 0xFC\}$ 

| Value   |    |    |    |
|---------|----|----|----|
| MSB LSB |    |    |    |
| FF      | FF | FF | FC |

Example 2: Decimal  $1 = \{0x00, 0x00, 0x00, 0x01\}$ 

| Value   |    |    |    |
|---------|----|----|----|
| MSB LSB |    |    |    |
| 00      | 00 | 00 | 01 |



## **ACR122U NFC Reader**

Table 7-c: Read Value Block Response Codes

|         |     | <u> </u> | 2011 1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|---------|-----|----------|------------------------------------------|
| Results | SW1 | SW2      | Meaning                                  |
| Success | 90  | 00       | The operation completed successfully.    |
| Error   | 63  | 00       | The operation failed.                    |

#### 5.5.3 Restore Value Block

The "Restore Value Block command" is used to copy a value from a value block to another value block.

Table 8-a: Restore Value Block APDU Format (7 Bytes)

| Command     | Class | INS | P1 | P2           | Lc |    | Data In      |
|-------------|-------|-----|----|--------------|----|----|--------------|
| Value Block | FF    | D7  | 00 | Source       | 02 | 03 | Target Block |
| Operation   |       |     |    | Block Number |    |    | Number       |

Source Block Number (1 Byte): The value of the source value block will be copied to the target value block.

**Target Block Number (1 Byte):** The value block to be restored. The source and target value blocks must be in the same sector.

Table 8-b: Restore Value Block Response Format (2 Bytes)

| Response | Data | Out |
|----------|------|-----|
| Result   | SW1  | SW2 |

Table 8-c: Restore Value Block Response Codes

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |
|         |     |     |                                       |

#### Example:

1. Store a value "1" into block 0x05 APDU = {FF D7 00 05 05 00 00 00 00 01}

Answer: 90 00

2. Read the value block 0x05APDU = {FF B1 00 05 00}

Answer: 00 00 00 01 90 00 [9000]

3. Copy the value from value block 0x05 to value block 0x06

APDU = {FF D7 00 05 02 03 06}

Answer: 90 00 [9000]

4. Increment the value block 0x05 by "5"

APDU = {FF D7 00 05 05 01 00 00 00 05}

Answer: 90 00 [9000]



### **ACR122U NFC Reader**

#### 6.0 Pseudo APDUs

Pseudo APUDs are used for the following:

- Exchanging Data with Non-PCSC Compliant Tags.
- Retrieving and setting the reader parameters.
- The Pseudo APDUs can be sent through the "ACR122U PICC Interface" if the tag is already connected.
- Or the Pseudo APDUs can be sent by using "Escape Command" if the tag is not presented yet.

#### **6.1 Direct Transmit**

This is the Payload to be sent to the tag or reader.

Table 9-a: Direct Transmit Command Format (Length of the Payload + 5 Bytes)

| Command            | Class | INS  | P1   | P2   | Lc                            | Data In |
|--------------------|-------|------|------|------|-------------------------------|---------|
| Direct<br>Transmit | 0xFF  | 0x00 | 0x00 | 0x00 | Number<br>of Bytes<br>to send | Payload |

Lc: Number of Bytes to Send (1 Byte)

Maximum 255 bytes **Data In: Response** 

Table 9-b: Direct Transmit Response Format

| Response        | Data Out      |
|-----------------|---------------|
| Direct Transmit | Response Data |

#### 6.2 Bi-Color LED and Buzzer Control

This APDU is used to control the states of the Bi-Color LED and Buzzer.

Table 10-a: Bi-Color LED and Buzzer Control Command Format (9 Bytes)

| Command      | Class | INS  | P1   | P2      | Lc   | Data In           |
|--------------|-------|------|------|---------|------|-------------------|
|              |       |      |      |         |      | (4 Bytes)         |
| Bi-Color and | 0xFF  | 0x00 | 0x40 | LED     | 0x04 | Blinking Duration |
| Buzzer       |       |      |      | State   |      | Control           |
| LED Control  |       |      |      | Control |      |                   |

#### P2: LED State Control

Table10-b: Bi-Color LED and Buzzer Control Format (1 Byte)

| CMD   | Item                             | Description                           |
|-------|----------------------------------|---------------------------------------|
| Bit 0 | Final Red LED State              | 1 = On; 0 = Off                       |
| Bit 1 | Final Green LED State            | 1 = On; 0 = Off                       |
| Bit 2 | Red LED State Mask               | 1 = Update the State<br>0 = No change |
| Bit 3 | Green LED State Mask             | 1 = Update the State<br>0 = No change |
| Bit 4 | Initial Red LED Blinking State   | 1 = On; 0 = Off                       |
| Bit 5 | Initial Green LED Blinking State | 1 = On; 0 = Off                       |
| Bit 6 | Red LED Blinking Mask            | 1 = Blink<br>0 = Not Blink            |
| Bit 7 | Green LED Blinking Mask          | 1 = Blink<br>0 = Not Blink            |



### **ACR122U NFC Reader**

#### **Data In: Blinking Duration Control**

Table 10-c: Bi-Color LED Blinking Duration Control Format (4 Bytes)

| Byte 0                 | Byte 1                | Byte 2     | Byte 3         |
|------------------------|-----------------------|------------|----------------|
| T1 Duration            | T2 Duration           | Number of  | Link to Buzzer |
| Initial Blinking State | Toggle Blinking State | repetition |                |
| (Unit = 100ms)         | (Unit = 100ms)        |            |                |

#### Byte 3: Link to Buzzer. Control the buzzer state during the LED Blinking.

0x00: The buzzer will not turn on

0x01: The buzzer will turn on during the T1 Duration

0x02: The buzzer will turn on during the T2 Duration

0x03: The buzzer will turn on during the T1 and T2 Duration.

### Data Out: SW1 SW2. Status Code returned by the reader.

#### Table10-d: Status Code

| Table To a. Otalae | 0000 |                   |                                       |
|--------------------|------|-------------------|---------------------------------------|
| Results            | SW1  | SW2               | Meaning                               |
| Success            | 90   | Current LED State | The operation completed successfully. |
| Error              | 63   | 00                | The operation failed.                 |

#### Table 10-e: Current LED State (1 Byte)

| Status     | Item              | Description     |
|------------|-------------------|-----------------|
| Bit 0      | Current Red LED   | 1 = On; 0 = Off |
| Bit 1      | Current Green LED | 1 = On; 0 = Off |
| Bits 2 – 7 | Reserved          |                 |

#### Note:

- A. The LED State operation will be performed after the LED Blinking operation is completed.
- B. The LED will not be changed if the corresponding LED Mask is not enabled.
- C. The LED will not be blinking if the corresponding LED Blinking Mask is not enabled. Also, the number of repetition must be greater than zero.
- D. T1 and T2 duration parameters are used for controlling the duty cycle of LED blinking and Buzzer Turn-On duration. For example, if T1=1 and T2=1, the duty cycle = 50%. #Duty Cycle = T1 / (T1 + T2).
- E. To control the buzzer only, just set the P2 "LED State Control" to zero.
- F. To make the buzzer operational, the "number of repetition" must greater than zero.
- G. To control the LED only, just set the parameter "Link to Buzzer" to zero.

#### 6.3 Get the Firmware Version of the reader

This is used to retrieve the firmware version of the reader.

#### Table 11-a: Command Format (5 Bytes)

| Command      | Class | INS  | P1   | P2   | Le   |
|--------------|-------|------|------|------|------|
| Get Response | 0xFF  | 0x00 | 0x48 | 0x00 | 0x00 |

### Table 11-b: Response Format (10 bytes)

| Response | Data Out         |
|----------|------------------|
| Result   | Firmware Version |

E.g. Response = 41 43 52 31 32 32 55 32 30 31 (Hex) = ACR122U201 (ASCII)



**ACR122U NFC Reader** 

### **6.4 Get the PICC Operating Parameter**

This is used to retrieve the PICC Operating Parameter of the reader.

Table 12-a: Command Format (5 Bytes)

| Command      | Class | INS  | P1   | P2   | Le   |
|--------------|-------|------|------|------|------|
| Get Response | 0xFF  | 0x00 | 0x50 | 0x00 | 0x00 |

Table12-b: Response Format (1 byte)

| 1 0.010 1 <b>2</b> 101 1 100 p 01 | 100 : 01111dt ( 1 2) to  |
|-----------------------------------|--------------------------|
| Response                          | Data Out                 |
| Result                            | PICC Operating Parameter |

### 6.5 Set the PICC Operating Parameter

This is used to set the PICC Operating Parameter of the reader.

Table 13-a: Command Format (5 Bytes)

| Command      | Class | INS  | P1   | P2                 | Le   |
|--------------|-------|------|------|--------------------|------|
| Get Response | 0xFF  | 0x00 | 0x51 | New PICC Operating | 0x00 |
|              |       |      |      | Parameter          |      |

Table 13-b: Response Format (1 byte)

| Response | Data Out                 |
|----------|--------------------------|
| Result   | PICC Operating Parameter |

PICC Operating Parameter. Default Value = FF

| Bit | Parameter                                                                                   | Description                                                         | Option                    |
|-----|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|
| 7   | Auto PICC Polling                                                                           | To enable the PICC Polling                                          | 1 = Enable<br>0 = Disable |
| 6   | Auto ATS Generation                                                                         | To issue ATS Request whenever an ISO14443-4 Type A tag is activated | 1 = Enable<br>0 = Disable |
| 5   | Polling Interval                                                                            | To set the time interval between successive PICC Polling.           | 1 = 250 ms<br>0 = 500 ms  |
| 4   | FeliCa 424K                                                                                 |                                                                     | 1 = Detect<br>0 = Skip    |
| 3   | FeliCa 212K                                                                                 |                                                                     | 1 = Detect<br>0 = Skip    |
| 2   | Topaz                                                                                       | The Tag Types to be detected                                        | 1 = Detect<br>0 = Skip    |
| 1   | ISO14443 Type B                                                                             | The Tag Types to be detected during PICC Polling.                   | 1 = Detect<br>0 = Skip    |
| 0   | ISO14443 Type A #To detect the MIFARE Tags, the Auto ATS Generation must be disabled first. |                                                                     | 1 = Detect<br>0 = Skip    |

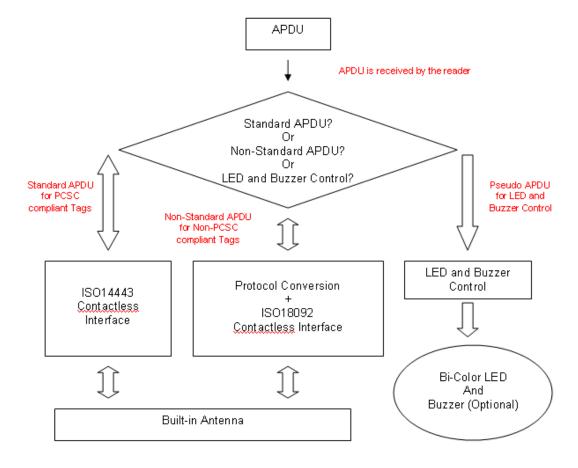


### **ACR122U NFC Reader**

### 7.0 Basic Program Flow for Contactless Applications

Step 0. Start the application. The reader will do the PICC Polling and scan for tags continuously. Once the tag is found and detected, the corresponding ATR will be sent to the PC. You must make sure that the PCSC Escape Command has been set. See **Appendix 1**: ACR122 PCSC Escape Command for more details.

Step 1. The first thing is to connect the "ACR122U PICC Interface".


Step 2. Access the PICC by sending APDU commands.

:

Step N. Disconnect the "ACR122U PICC Interface". Shut down the application.

#### NOTE:

- 1. The antenna can be switched off in order to save the power.
  - Turn off the antenna power: FF 00 00 00 04 D4 32 01 00
  - Turn on the antenna power: FF 00 00 00 04 D4 32 01 01
- 2. Standard and Non-Standard APDUs Handling.
  - PICCs that use Standard APDUs: ISO14443-4 Type A and B, MIFARE .. etc
  - PICCs that use Non-Standard APDUs: FeliCa, Topaz .. etc.



- 1) For the ACR122U PICC Interface, ISO7816 T=1 protocol is used.
  - o PC → Reader: Issue an APDU to the reader.



### **ACR122U NFC Reader**

○ Reader → PC: The response data is returned.

### 7.1 How to access PCSC Compliant Tags (ISO14443-4)?

Basically, all ISO 14443-4 compliant cards (PICCs) would understand the ISO 7816-4 APDUs. The ACR122U Reader just has to communicate with the ISO 14443-4 compliant cards through exchanging ISO 7816-4 APDUs and Responses. ACR122U will handle the ISO 14443 Parts 1-4 Protocols internally.

MIFARE 1K, 4K, MINI and Ultralight tags are supported through the T=CL emulation. Just simply treat the MIFARE tags as standard ISO14443-4 tags. For more information, please refer to topic "PICC Commands for MIFARE Classic Memory Tags"

Table 3.1-1a: ISO 7816-4 APDU Format

| Command       | Class | INS | P1 | P2 | Lc      | Data | Le        |
|---------------|-------|-----|----|----|---------|------|-----------|
|               |       |     |    |    |         | In   |           |
| ISO 7816 Part |       |     |    |    | Length  |      | Expected  |
| 4 Command     |       |     |    |    | of the  |      | length of |
|               |       |     |    |    | Data In |      | the       |
|               |       |     |    |    |         |      | Response  |
|               |       |     |    |    |         |      | Data      |

Table 3.1-1b: ISO 7816-4 Response Format (Data + 2 Bytes)

| Response | Data Out |          |     |     |
|----------|----------|----------|-----|-----|
| Result   | Respo    | nse Data | SW1 | SW2 |

Table 3.1-1c: Common ISO 7816-4 Response Codes

| Results | SW1 | SW2 | Meaning                               |
|---------|-----|-----|---------------------------------------|
| Success | 90  | 00  | The operation completed successfully. |
| Error   | 63  | 00  | The operation failed.                 |

#### Typical sequence may be:

- Present the Tag and Connect the PICC Interface
- Read / Update the memory of the tag

#### Step 1) Connect the Tag

Step 2) Send an APDU, Get Challenge.

<< 00 84 00 00 08

>> 1A F7 F3 1B CD 2B A9 58 [90 00]

#### Hint:

For ISO14443-4 Type A tags, the ATS can be obtained by using the APDU "FF CA 00 00 01"



### **ACR122U NFC Reader**

#### 7.2 How to access DESFIRE Tags (ISO14443-4)?

The DESFIRE supports ISO7816-4 APDU Wrapping and Native modes. Once the DESFire Tag is activated, the first APDU sent to the DESFire Tag will determine the "Command Mode". If the first APDU is "Native Mode", the rest of the APDUs must be in "Native Mode" format. Similarly, If the first APDU is "ISO7816-4 APDU Wrapping Mode", the rest of the APDUs must be in "ISO7816-4 APDU Wrapping Mode" format.

#### **Example 1: DESFIRE ISO7816-4 APDU Wrapping.**

To read 8 bytes random number from an ISO 14443-4 Type A PICC (DESFIRE)

APDU = {90 0A 00 00 01 00 00}

Class = 0x90; INS = 0x0A (DESFire Instruction); P1 = 0x00; P2 = 0x00 Lc = 0x01; Data In = 0x00; Le = 0x00 (Le = 0x00 for maximum length)

Answer: 7B 18 92 9D 9A 25 05 21 [\$91AF]

The Status Code [91 AF] is defined in DESFIRE specification. Please refer to the DESFIRE specification for more details.

#### **Example 2: DESFIRE Frame Level Chaining (ISO 7816 wrapping mode)**

In this example, the application has to do the "Frame Level Chaining". To get the version of the DESFIRE card

Step 1: Send an APDU {90 60 00 00 00} to get the first frame. INS=0x60

Answer: 04 01 01 00 02 18 05 91 AF [\$91AF]

Step 2: Send an APDU {90 AF 00 00 00} to get the second frame. INS=0xAF Answer: 04 01 01 00 06 18 05 91 AF [\$91AF]

Step 3: Send an APDU {90 AF 00 00 00} to get the last frame. INS=0xAF Answer: 04 52 5A 19 B2 1B 80 8E 36 54 4D 40 26 04 91 00 [\$9100]

#### **Example 3: DESFIRE Native Command.**

We can send Native DESFire Commands to the reader without ISO7816 wrapping if we find that the Native DESFire Commands are more easier to handle.

To read 8 bytes random number from an ISO 14443-4 Type A PICC (DESFIRE) APDU = {0A 00}

Answer: AF 25 9C 65 0C 87 65 1D D7[\$1DD7]

In which, the first byte "AF" is the status code returned by the DESFire Card. The Data inside the blanket [\$1DD7] can simply be ignored by the application.

### **Example 4: DESFIRE Frame Level Chaining (Native Mode)**

In this example, the application has to do the "Frame Level Chaining". To get the version of the DESFIRE card.

Step 1: Send an APDU {60} to get the first frame. INS=0x60

Answer: AF 04 01 01 00 02 18 05[\$1805]

Step 2: Send an APDU {AF} to get the second frame. INS=0xAF

Answer: AF 04 01 01 00 06 18 05[\$1805]

Step 3: Send an APDU {AF} to get the last frame. INS=0xAF Answer: 00 04 52 5A 19 B2 1B 80 8E 36 54 4D 40 26 04[\$2604]

#### Note:

In DESFIRE Native Mode, the status code [90 00] will not be added to the response if the response length is greater than 1. If the response length is less than 2, the status code [90 00] will be added in order to meet the requirement of PCSC. The minimum response length is 2.



### **ACR122U NFC Reader**

#### 7.3 How to access FeliCa Tags (ISO18092)?

Typical sequence may be:

- Present the FeliCa Tag and Connect the PICC Interface
- Read / Update the memory of the tag

#### Step 1) Connect the Tag

The ATR = 3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 F0 11 00 00 00 00 8A In which,

F0 11 = FeliCa 212K

#### Step 2) Read the memory block without using Pseudo APDU.

<< 10 06 [8-byte NFC ID] 01 09 01 01 80 00

>> 1D 07 [8-byte NFC ID] 00 00 01 00 AA 55 AA [90 00]

Or

### Step 2) Read the memory block using Pseudo APDU.

<< FF 00 00 00 [13] D4 40 01 10 06 [8-byte NFC ID] 01 09 01 01 80 00 In which.

[13] is the length of the Pseudo Data "D4 40 01.. 80 00"

D4 40 01 is the Data Exchange Command

>> **D5 41 00** 1D 07 [8-byte NFC ID] 00 00 01 00 AA 55 AA

In which, D5 41 00 is the Data Exchange Response

Note:

The NFC ID can be obtained by using the APDU "FF CA 00 00 00"

Please refer to the FeliCa specification for more detailed information.

#### 7.4 How to access NFC Forum Type 1 Tags (ISO18092)? E.g. Jewel and Topaz Tags

Typical sequence may be:

- Present the Topaz Tag and Connect the PICC Interface
- Read / Update the memory of the tag

#### Step 1) Connect the Tag

The ATR = 3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 F0 04 00 00 00 00 9F In which, F0 04 = Topaz

### Step 2) Read the memory address 08 (Block 1: Byte-0) without using Pseudo APDU

<< **01 08** 

>> **18** [90 00]

In which, Response Data = 18

Or

Step 2) Read the memory address 08 (Block 1: Byte-0) using Pseudo APDU

<< FF 00 00 00 [05] D4 40 01 01 08

In which,

[05] is the length of the Pseudo APDU Data "D4 40 01 01 08"

D4 40 01 is the DataExchange Command.

**01 08** is the data to be sent to the tag.

>> **D5 41 00 18** [90 00]

In which, Response Data = 18



## ACR122U NFC Reader

Tip: To **read all** the memory content of the tag << **00** 

>> 11 48 18 26 .. 00 [90 00]

Step 3) Update the memory address 08(Block 1: Byte-0)with the data FF

<< 53 08 FF

>> FF [90 00]

In which, Response Data = FF

### **Topaz Memory Map.**

Memory Address = Block No \* 8 + Byte No

e.g. Memory Address 08 (hex) =  $1 \times 8 + 0 = Block 1$ : Byte-0 = Data0

e.g. Memory Address 10 (hex) =  $2 \times 8 + 0 = Block 2$ : Byte-0 = Data8

| HR0             | HR1  |
|-----------------|------|
| 11 <sub>h</sub> | XX h |

|               | EEPROM Memory Map |                 |        |        |        |        |        |        |                 |          |
|---------------|-------------------|-----------------|--------|--------|--------|--------|--------|--------|-----------------|----------|
| Туре          | Block<br>No.      | Byte-0<br>(LSB) | Byte-1 | Byte-2 | Byte-3 | Byte-4 | Byte-5 | Byte-6 | Byte-7<br>(MSB) | Lockable |
| UID           | 0                 | UID-0           | UID-1  | UID-2  | UID-3  | UID-4  | UID-5  | UID-6  |                 | Locked   |
| Data          | 1                 | Data0           | Data1  | Data2  | Data3  | Data4  | Data5  | Data6  | Data7           | Yes      |
| Data          | 2                 | Data8           | Data9  | Data10 | Data11 | Data12 | Data13 | Data14 | Data15          | Yes      |
| Data          | 3                 | Data16          | Data17 | Data18 | Data19 | Data20 | Data21 | Data22 | Data23          | Yes      |
| Data          | 4                 | Data24          | Data25 | Data26 | Data27 | Data28 | Data29 | Data30 | Data31          | Yes      |
| Data          | 5                 | Data32          | Data33 | Data34 | Data35 | Data36 | Data37 | Data38 | Data39          | Yes      |
| Data          | 6                 | Data40          | Data41 | Data42 | Data43 | Data44 | Data45 | Data46 | Data47          | Yes      |
| Data          | 7                 | Data48          | Data49 | Data50 | Data51 | Data52 | Data53 | Data54 | Data55          | Yes      |
| Data          | 8                 | Data56          | Data57 | Data58 | Data59 | Data60 | Data61 | Data62 | Data63          | Yes      |
| Data          | 9                 | Data64          | Data65 | Data66 | Data67 | Data68 | Data69 | Data70 | Data71          | Yes      |
| Data          | А                 | Data72          | Data73 | Data74 | Data75 | Data76 | Data77 | Data78 | Data79          | Yes      |
| Data          | В                 | Data80          | Data81 | Data82 | Data83 | Data84 | Data85 | Data86 | Data87          | Yes      |
| Data          | С                 | Data88          | Data89 | Data90 | Data91 | Data92 | Data93 | Data94 | Data95          | Yes      |
| Reserved      | D                 |                 |        |        |        |        |        |        |                 |          |
| Lock/Reserved | Е                 | LOCK-0          | LOCK-1 | OTP-0  | OTP-1  | OTP-2  | OTP-3  | OTP-4  | OTP-5           |          |



Please refer to the Jewel and Topaz specification for more detailed information.



## **ACR122U NFC Reader**

7.5 Get the current setting of the contactless interface

Step 1) Get Status Command << FF 00 00 00 02 D4 04 >> D5 05 [Err] [Field] [NbTg] [Tg] [BrRx] [BrTx] [Type] 80 90 00

Or if no tag is in the field >> D5 05 00 00 00 80 90 00

[Err] is an error code corresponding to the latest error detected. Field indicates if an external RF field is present and detected (Field = 0x01) or not (Field = 0x00).

[NbTg] is the number of targets. The default value is 1.

[Tg]: logical number

[BrRx]: bit rate in reception

0x00 : 106 kbps0x01 : 212 kbps0x02 : 424 kbps

[BrTx]: bit rate in transmission

0x00 : 106 kbps0x01 : 212 kbps0x02 : 424 kbps

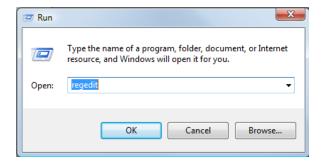
[Type]: modulation type

0x00 : ISO14443 or Mifare®

0x10 : FeliCa<sup>™</sup>
0x01 : Active mode

0x02 : Innovision Jewel® tag

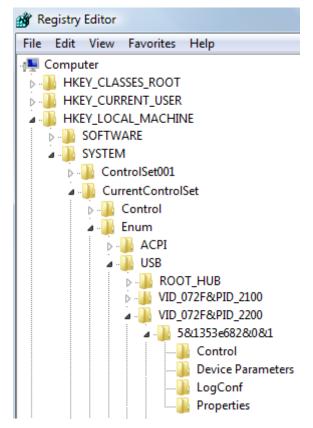



### **ACR122U NFC Reader**

### Appendix 1: ACR122 PCSC Escape Command

- 1. Select the "ACS ACR122U PICC Interface 0"
- 2. Select the "Shared Mode" if the "ACR122U PICC Interface" is already connected or "Direct Mode if the "ACR122U PICC Interface" is not connected.
- 3. Press the button "Connect" to establish a connection between the PC and the ACR122U reader.
- 4. Enter "3500" in the Command Text Box
- 5. Enter the PCSC Escape Command, e.g. "FF 00 48 00 00" and press the button "Send" to send the command to the reader. #Get the firmware version
- 6. Press the button "Disconnect" to break the connection.
- 7. In order to send or receive Escape commands to a reader, follow the instructions below
- 8. The vendor IOCTL for the **Escape** command is defined as follows: #define IOCTL\_CCID\_ESCAPE SCARD\_CTL\_CODE(3500)

The following instructions enumerate the steps to enable the PCSC Escape command:


Execute the "RegEdit" in the "Run Command Menu" of Windows

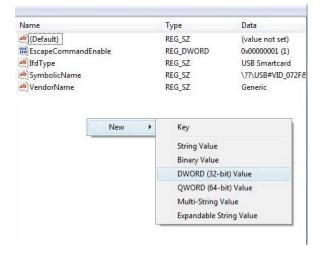


Add a DWORD "EscapeCommandEnable" under HKLM\SYSTEM\CCS\Enum\USB\Vid\_072F&Pid\_9 0CC\Device Parameters

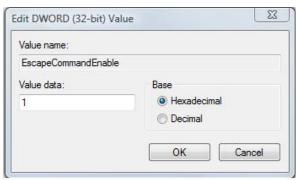
For Vista, the path is:

Computer\HKEY\_LOCAL\_MACHINE\SYSTEMS\C
urrentControlSet\Enum\USB






## **ACR122U NFC Reader**


Look for: VID\_072F&PID\_2200 Then expand the node. Look under Device parameters



Create a DWORD entry (32-bit) with the name: EscapeCommandEnable



To Modify the value of the EscapeCommandEnable double click on the entry and input 1 in the Value data with the base set in Hexadecimal.





**ACR122U NFC Reader** 

## Appendix 2: APDU Command and Response Flow for ISO14443 Compliant Tags

Assume an ISO14443-4 Type B tag is used.

<< Typical APDU Command and Response Flow >>

|                             | PC                                                           | Reader                                           | Tag |
|-----------------------------|--------------------------------------------------------------|--------------------------------------------------|-----|
| Sequences                   | USB Interface<br>(12Mbps)                                    | RF Interface<br>(13.56MHz)                       |     |
| 1. The command is sent      | Contactless Related Command                                  | Tag-specific Command<br>Frame<br>——▶             |     |
|                             | [APDU Command]<br>e.g. [00 84 00 00 08] (Get<br>Challenge)   | [APDU Command]<br>embedded in ISO14443<br>Frame  |     |
| 2. The response is received | Contactless Related Response                                 | Tag-specific Response<br>Frame                   |     |
| received                    | ←                                                            | <del></del>                                      |     |
|                             | [APDU Response]<br>e.g. [11 22 33 44 55 66<br>77 88] (90 00) | [APDU Response]<br>embedded in ISO14443<br>Frame |     |



## **ACR122U NFC Reader**

## Appendix 3: APDU Command and Response Flow for ISO18092 Compliant Tags

Assume a TOPAZ tag is used.

<< Typical APDU Command and Response Flow >>

|                             | PC                                                                                                                                   | Reader                                                                         | Tag |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----|
| Sequences                   | USB Interface<br>(12Mbps)                                                                                                            | RF Interface<br>(13.56MHz)                                                     |     |
| 1. The command is sent      | Contactless Related Command  [Native Command] e.g. [01 08] (read memory address 08)                                                  | Tag-specific Command Frame  →  [Native Command] embedded in ISO18092 Frame     |     |
|                             | or  Pseudo APDU Command + [Native Command] e.g. FF 00 00 00 05 D4 40 01 [01 08]                                                      |                                                                                |     |
| 2. The response is received | Contactless Related Response  [Native Response] e.g. 00 (90 00)  or  Pseudo APDU Response + [Native Response] e.g. D5 41 00 [00] (90 | Tag-specific Response Frame  e.g. [Native Response] embedded in ISO18092 Frame |     |
|                             | 00)                                                                                                                                  |                                                                                |     |



**ACR122U NFC Reader** 

## **Appendix 4: Error Codes**

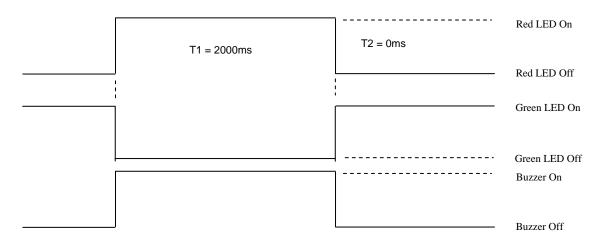
| Error                                                                                 | Error Code |
|---------------------------------------------------------------------------------------|------------|
| No Error                                                                              | 0x00       |
| Time Out, the target has not answered                                                 | 0x01       |
| A CRC error has been detected by the contactless UART                                 | 0x02       |
| A Parity error has been detected by the contactless UART                              | 0x03       |
| During a MIFARE anti-collision/select operation, an erroneous Bit Count has been      | 0x04       |
| detected                                                                              |            |
| Framing error during MIFARE operation                                                 | 0x05       |
| An abnormal bit-collision has been detected during bit wise anti-collision at 106     | 0x06       |
| kbps                                                                                  |            |
| Communication buffer size insufficient                                                | 0x07       |
| RF Buffer overflow has been detected by the contactless UART (bit BufferOvfl of the   | 0x08       |
| register CL_ERROR)                                                                    |            |
| In active communication mode, the RF field has not been switched on in time by the    | 0x0A       |
| counterpart (as defined in NFCIP-1 standard)                                          |            |
| RF Protocol error (cf. reference [4], description of the CL_ERROR register)           | 0x0B       |
| Temperature error: the internal temperature sensor has detected overheating, and      | 0x0D       |
| therefore has automatically switched off the antenna drivers                          |            |
| Internal buffer overflow                                                              | 0x0E       |
| Invalid parameter (range, format,)                                                    | 0x10       |
| DEP Protocol: The chip configured in target mode does not support the command         | 0x12       |
| received from the initiator (the command received is not one of the following:        |            |
| ATR_REQ, WUP_REQ, PSL_REQ, DEP_REQ, DSL_REQ, RLS_REQ, ref. [1]).                      |            |
| DEP Protocol / Mifare / ISO/IEC 14443-4: The data format does not match to the        | 0x13       |
| specification. Depending on the RF protocol used, it can be:                          |            |
| Bad length of RF received frame,                                                      |            |
| • Incorrect value of PCB or PFB,                                                      |            |
| Invalid or unexpected RF received frame,                                              |            |
| NAD or DID incoherence.                                                               |            |
| Mifare: Authentication error                                                          | 0x14       |
| ISO/IEC 14443-3: UID Check byte is wrong                                              | 0x23       |
| DEP Protocol: Invalid device state, the system is in a state which does not allow the | 0x25       |
| operation                                                                             |            |
| Operation not allowed in this configuration (host controller interface)               | 0x26       |
| This command is not acceptable due to the current context of the chip (Initiator vs.  | 0x27       |
| Target, unknown target number, Target not in the good state,)                         |            |
| The chip configured as target has been released by its initiator                      | 0x29       |
| ISO/IEC 14443-3B only: the ID of the card does not match, meaning that the            | 0x2A       |
| expected card has been exchanged with another one.                                    |            |
| ISO/IEC 14443-3B only: the card previously activated has disappeared.                 | 0x2B       |
| Mismatch between the NFCID3 initiator and the NFCID3 target in DEP 212/424            | 0x2C       |
| kbps passive.                                                                         |            |
| An over-current event has been detected                                               | 0x2D       |
| NAD missing in DEP frame                                                              | 0x2E       |



**ACR122U NFC Reader** 

## **Appendix 5: Sample Codes for Setting the LED**

## **Example 1: To read the existing LED State.** // Assume both Red and Green LEDs are OFF initially // // Not link to the buzzer // APDU = "FF 00 40 00 04 00 00 00 00" Response = "90 00". RED and Green LEDs are OFF. **Example 2: To turn on RED and Green Color LEDs** // Assume both Red and Green LEDs are OFF initially // // Not link to the buzzer // APDU = "FF 00 40 0F 04 00 00 00 00" Response = "90 03". RED and Green LEDs are ON, To turn off both RED and Green LEDs, APDU = "FF 00 40 0C 04 00 00 00 00" Example 3: To turn off the RED Color LED only, and left the Green Color LED unchanged. // Assume both Red and Green LEDs are ON initially // // Not link to the buzzer // APDU = "FF 00 40 04 04 00 00 00 00" Response = "90 02". Green LED is not changed (ON); Red LED is OFF, Red LED On Red LED Off




### **ACR122U NFC Reader**

#### Example 4: To turn on the Red LED for 2 sec. After that, resume to the initial state

// Assume the Red LED is initially OFF, while the Green LED is initially ON. //

// The Red LED and buzzer will turn on during the T1 duration, while the Green LED will turn off during the T1 duration. //



1Hz = 1000ms Time Interval = 500ms ON + 500 ms OFF

T1 Duration = 2000ms = 0x14

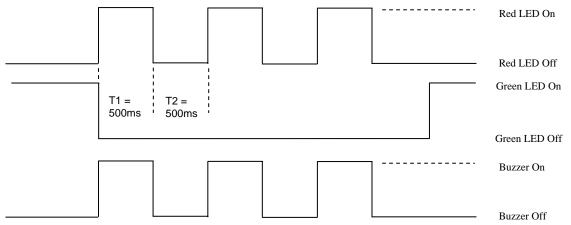
T2 Duration = 0ms = 0x00

Number of repetition = 0x01

Link to Buzzer = 0x01

APDU = "FF 00 40 50 04 14 00 01 01"

Response = "90 02"


### Example 5: To blink the Red LED of 1Hz for 3 times. After that, resume to initial state

// Assume the Red LED is initially OFF, while the Green LED is initially ON. //

// The Initial Red LED Blinking State is ON. Only the Red LED will be blinking.

// The buzzer will turn on during the T1 duration, while the Green LED will turn off during both the T1 and T2 duration.

 $/\!/$  After the blinking, the Green LED will turn ON. The Red LED will resume to the initial state after the blinking  $/\!/$ 



1Hz = 1000ms Time Interval = 500ms ON + 500 ms OFF

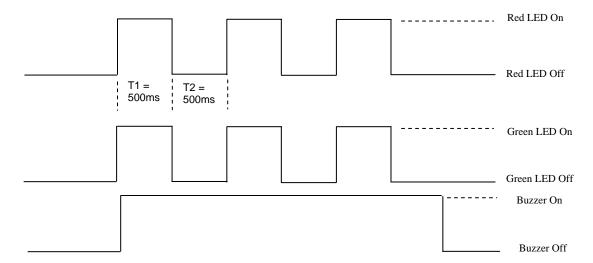
T1 Duration = 500ms = 0x05

T2 Duration = 500ms = 0x05



## **ACR122U NFC Reader**

Number of repetition = 0x03Link to Buzzer = 0x01


APDU = "FF 00 40 50 04 05 05 03 01" Response = "90 02"

### Example 6: To blink the Red and Green LEDs of 1Hz for 3 times

// Assume both the Red and Green LEDs are initially OFF. //

// Both Initial Red and Green Blinking States are ON //

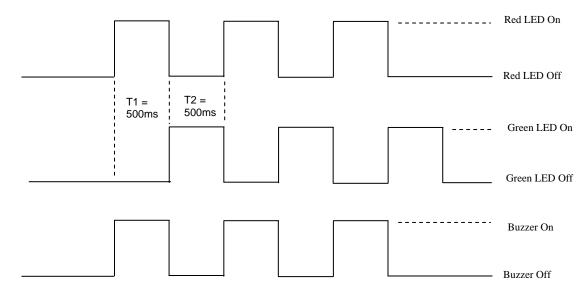
// The buzzer will turn on during both the T1 and T2 duration//



1Hz = 1000ms Time Interval = 500ms ON + 500 ms OFF T1 Duration = 500ms = 0x05 T2 Duration = 500ms = 0x05 Number of repetition = 0x03 Link to Buzzer = 0x03

APDU = "FF 00 40 F0 04 05 05 03 03" Response = "90 00"




## **ACR122U NFC Reader**

### Example 7: To blink the Red and Green LED in turn of 1Hz for 3 times

// Assume both Red and Green LEDs are initially OFF. //

// The Initial Red Blinking State is ON; The Initial Green Blinking States is OFF //

// The buzzer will turn on during the T1 duration//



1Hz = 1000ms Time Interval = 500ms ON + 500 ms OFF

T1 Duration = 500ms = 0x05

T2 Duration = 500ms = 0x05

Number of repetition = 0x03

Link to Buzzer = 0x01

APDU = "FF 00 40 D0 04 05 05 03 01"; Response = "90 00"